
GIMBERT Bastien et ZERU Simon D1

SAE 1.012 – Automatic

classification – Report

SAE 1.012 – Report GIMBERT Bastien / ZERU Simon D1

Table of contents

Table of contents..0
I - Introduction.. 1

Introduction to the Classification System Project... 1
I - Project Achievements... 1

Project review :...1
Part 1.. 1
Part 2:... 2
Improving program processing times:.. 2
What we didn’t do :... 4

III - Performance (or complexity) analysis... 4
IV - Conclusion & Upgrade..5

0

SAE 1.012 – Report GIMBERT Bastien / ZERU Simon D1

I - Introduction

Introduction to the Classification System Project

We need to code an "Automatic Classification" project as part of SAE S1.01. This project is a
key part of our learning, where we are challenged to develop a program for the efficient and
accurate classification of journalistic press dispatches into five categories:
ENVIRONMENT-SCIENCES, CULTURE, ECONOMY, POLITICS, and SPORTS.

Our task involves the initial creation of lexicons for each category. We will manually select
relevant words from sample press dispatches to build the foundation of our classification
system to identify a category for each press dispatch. After this, we will use these lexicons to
calculate scores for each category in a given press dispatch. The project is designed in
several stages, from understanding the objectives, processing text data and to developing
methods for automatic classification. It requires us to work with specific formatted files, such
as press dispatch and lexicon files with a special format (keyword:power). We are expected
to work in pairs and will present our results in a report and an oral presentation.

This project is an excellent opportunity for us to apply our theoretical knowledge in computer
science, data analysis, and textual understanding in a practical and engaging way. It's a
great way for us to demonstrate our skills and knowledge in a real-world context

I - Project Achievements

Project review :

Part 1

In this first part of the project, we first needed to manually write lexicons for each category
and loaded them into arrays using the "initLexique" method in the Categorie class.

Reading files involved creating a method called "lectureDepeches" to get the press
dispatches. We used FileInputStream and Scanner to parse the file and generate Depeche
objects stored in an ArrayList.

To enhance efficiency, we introduced a class named "PaireChaineEntier" for creating
dictionaries, consisting of two fields: "chaine" (a String) and "entier" (an int), representing
frequently encountered data pairs in our project.

The "classementDepeches" method played a crucial role in classifying Depeches into
categories, tracking correct classifications, and writing results to a file. We made it with the
help of few methods :

1

SAE 1.012 – Report GIMBERT Bastien / ZERU Simon D1

● "entierPourChaine" method, which locates a string in an ArrayList of
PaireChaineEntier and returns its index if found.

● "score" method to calculate the total score of a Depeche object
● "chaineMax" method to determine the word which has the maximum integer value in

an ArrayList of PaireChaineEntier.
● "indicePourChaine" which searches for a specific string in an ArrayList
● "moyenne" to calculate the precision of our classification system.

In brief, It calculated category scores, identified the highest-scoring category for each press
dispatch, and recorded correct classifications with accuracy percentages in the output file.
This comprehensive process handled potential IOExceptions effectively

Part 2:

It was fine to create a hand-written lexicon, but we needed to improve our approach.
In fact, the classification system wasn’t precise with around 60% of correct
detections.

The solution was to automate the entire process. To achieve this, we created a method to
rank each word in the press dispatches, determining which words were repeated the most in
each category. This approach allowed us to precisely identify the words to include in our
lexicons.

We made the “generationLexique” method which creates a lexicon file for a specified
category from a list of Depeche objects with the help of three other methods :

● “initDico” which initializes a dictionary for a specific category from a list of Depeche.
● “calculScores” that adjusts the scores in a dictionary.
● “poidsPourScore” method that assigns a weight to a given score: 0 for scores of 0 or

less, 1 for scores below 4, 2 for scores below 7, and 3 for higher scores.

Basically, “generationLexique” initializes a dictionary, adjusts scores based on word
frequency, sorts the dictionary, filtering out unwanted characters and ensuring a beautiful
formatting

Improving program processing times:

Firstly, we have modified our "classementDepeches" method. As we call the same function
several times, we have stored it in a variable to improve execution time.

2

SAE 1.012 – Report GIMBERT Bastien / ZERU Simon D1

Then, we had many "if" for each category. We replaced these "if" with a "switch case" which
determines the category of depeches and adapts the situation.

We have also replaced our bubble sorting system with a fusion sorting system, which is
much more efficient. We have gained a lot of time by changing this sorting. Bubble sorting is
quadratic in average compared to near-linear fusion sorting.

Finally, we have improved our fusion sorting method. The goal was to lower our amount of
comparisons

3

https://buzut.net/cours/computer-science/time-complexity

SAE 1.012 – Report GIMBERT Bastien / ZERU Simon D1

What we didn’t do :

We did some research about the KNN classification system and we thought about making it,
but we couldn’t find a way to calculate the distance between press dispatches to categorize
them. Our hypothesis was using the Levenstein distance algorithm, which measures the
minimum number of modifications (additions, deletions, substitutions) required to change
one text into another. It is best suited for short texts or for measuring similarity between
sentences. With a bit more time and research we could have dug a bit more deeper about
this part.

III - Performance (or complexity) analysis
Without sort and sequential search :

With optimized bubble sorting and dichotomy search (quadratic in average ~ O(n^2)):

4

SAE 1.012 – Report GIMBERT Bastien / ZERU Simon D1

With merge sorting and dichotomy search (near-linear O(n log n)) :

As you can see, the results demonstrate a better sorting system. The merge dichotomy
sorting system is the best with the lowest amount of comparisons and processing time.
It is why we choose to use it in the final version of this project

IV - Conclusion & Upgrade
We can conclude that the number of comparisons and the execution time is really variable
depending on the method you choose, you have to adapt to your needs.
It's important to think things through and take a step back before you start coding so that you
can choose the right method. We've optimized our 'artificial intelligence' as much as possible
and carried out tests to get the best detection performance possible. We've achieved
satisfactory results with a high detection rate (over 50% for a list of 21 daily news articles).
This shows us the real reliability of our system, which is still far from perfect.

To improve the speed of our java code, we could use HashMaps instead of Arraylists.
HashMaps allow us to attach a keyword to a value. They can only be in the form "key:value".

We could also use a "BufferedReader" instead of a "FileInputStream". BufferedReader would
allow multiple lines to be read. This way, you can read files faster, rather than line by line.

We also discovered that the most time-consuming method was obviously
“classementDepeches”. We know that improving it would sky rocket our overall performance.
Now, the real question is how to make it better ? Well, this is a question that hasn’t been
answered yet, but we’ll work on it.

5

SAE 1.012 – Report GIMBERT Bastien / ZERU Simon D1

6

